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A Linear Chemical Cycle and Oscillations

Jun Suzuki and Akio Morita*
Department of Chemistry, Graduate School of Arts and Sciences, UniVersity of Tokyo,
Komaba, Meguro-ku, Tokyo 153-8902, Japan

ReceiVed: March 29, 2001

We have found that for a simple first-order successive irreversible cyclic reaction, there exist oscillations in
time for the concentrations of chemical species for a certain range in the number of reaction steps. If the
steps are too small or too large, we do not obtain the oscillations, which has been thought to be the case
previously.

In many fields of science, we have found it useful to introduce
models based on chemical reactions including physical processes
when we discuss macroscopic phenomenological dynamics
where thermodynamics ceases to be applied. Chemical oscil-
lations have attracted many scientists’ interests recently in
connection with nonlinear processes, typically represented by
the BZ reaction.1 For linear (first-order) chemical reactions, we
have believed there is no room for finding an oscillation because
they are essentially monotonically dissipative so that no restoring
force would appear. However, in this letter we show that there
exist chemical oscillations in successive cyclic reaction in Figure
1, where the final product is obtained through intermediate
stages for which each reaction is first-order (linear). This is due
to the fact that the restoring force can occur through the cycle
when the number of intermediate stages,N, is appropriate,
neither too small nor too large.

Rate equations for reactions in Figure 1 are given by

whereaj(t) is the concentration of chemical speciesAj at the
sitej andk andk′ are the forward and backward rate coefficients,
respectively, as indicated in Figure 1. Although the mathematical

solutions for the rate equations (eq 1) have been expressed
exactly in various previous studies,2,3 we write them here for
the sake of self-consistency. To this end, it is convenient to
employ the generating function,G(z,t), which is defined by the
expression

On multiplying eq 1 withzj, summing up and using the cyclic
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daj(t)

dt
) - (k + k′)aj(t) + kaj-1(t) + k′aj+1(t)

j ) 0, 1, 2,...,N - 1, with a-1(t) ) aN-1(t) (1)

Figure 1. The present model of cyclic irreversible first-order chemical
reactions.

G(z,t) ) ∑
j)0

N-1

zjaj(t) (2)
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Figure 3. Plots ofaj(t) vs t for N ) 50, which leads to pronounced oscillations fork′ ) 0 wherej ) 0 andj ) 25 are shown. When the value ofk′ increases, the oscillations tend to decay and finally vanish
for k ) k′ ) 0.5. Here we have assumedk + k′ ) 1.
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condition, we find that

Particularly whenzN ) 1, namelyz ) ei2πm/N, wherem ) 0, 1,
2,...,N - 1, we can ignore the second term on the right-hand
side of eq 3 so that we can write

whereG(m,0) should be determined by the initial values for
aj(0). At this stage, we note the relation

On using this relation and summing up with respect tom after
multiplying eq 4 with e-i2πmL/N, we find that

This is a general expression foraL(t), but here for the sake of
simplicity, we shall confine ourselves to the particular case of

a0(0) ) 1 andaj(0) ) 0 for j ) 1, 2, 3,...,N - 1, whereG(m,0)
) 1 so that

in which In(z) is the modified Bessel function.
In Figures 2-4, we have plottedaj(t) in eq 6 after puttingL

) j. In Figure 2, we have shown how oscillations may begin
with small values ofN for the case ofk′ ) 0. ForN ) 50, the
oscillation is strongly pronounced for the case ofk ) 1 andk′
) 0, which can be seen from Figure 3, wherek + k′ ) 1 has
been assumed. Moreover, we see that the largerk′ is, the weaker
the oscillation becomes where the presence of the reverse
reaction hinders it. AsN becomes still larger, it tends to vanish,
a behavior seen in Figure 4 in the case ofk′ ) 0, where it should
be noted that scales in abscissas and ordinates are different. The
oscillations arise from the cyclic boundary condition for the
reaction so that they would be dependent uponN. For reversible
reactions with the cyclic boundary, the oscillation becomes weak
due to the fact that each site plays a role of a sink which absorbs
reactants or products so that it no longer releases it to the cycle
of the reaction. Further studies on this chemical reaction will
be published elsewhere. Since the present chemical reactions
are so fundamental for considering elemental steps including
physical processes, we hope the oscillations will be confirmed
experimentally.
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∂G(z,t)
∂t

) - (k + k′ - kz- k′z-1)G(z,t) +

(zN - 1)[k′z-1a0(t) - kaN-1(t)] (3)

G(m,t) ) ∑
j)0

N-1

ei2πmj/Naj(t) ) G(m,0)

exp[- (k + k′ - kei2πm/N - k′e-i2πm/N)t] (4)

∑
m)0

N-1

ei2πmM/N ) {N for M ) 0, (N, (2N, ...
0 otherwise

(5)

aL(t) )
1

N
∑
m)0

N-1

e-i2πmL/NG(m,0) exp[- (k + k′ - kei2πm/N -

k′e-i2πm/N)t] L ) 0, 1, 2, ...,N - 1 (6)

aL(t) ) (k/k′)L/2 ∑
n)-∞

∞

(k/k′)nN/2IL+nN(2txkk′)
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